This blog has moved: follow me on my new personal page!

Dear Reader,

I have decided to create a new web-page to collect both my personal page and the present blog. For this reason, I have opened a new website: This new website contains my personal page, more info on my research, my CV, and the continuation of this blog.

As a consequence, The Inductivist Turkey won’t be updated any more. All the old posts have been moved to the new website, and all the new posts will be published directly there!

Hope to see you again on!




The desire to be puzzled

Here is a very interesting post on possible alternatives to Cantor’s Transfinite Numbers Theory! Was Cantor’s notion of infinite really “unavoidable”?
The topic is particularly interesting when considered within the general framework of mathematical development. How does mathematics evolve? What “forces” mathematics to take some roads instead of other roads? And how do these choices influence the way in which we model and understand the natural world?


A prominent professor in the philosophy of mathematics once told me that the key to writing an attractive philosophy paper is to present the reader with a puzzle. “Give me a puzzle, and I’ll be interested”, he said. As I was surrounded by mathematicians and philosophers of mathematics which were steadily exchanging puzzles, I had no doubt that he was right: mathematicians and philosophers of mathematics like puzzles. But then, mightn’t it be the case that this fondness of puzzles influences much more than just our judgment of a philosophy paper (and our conversations over dinner)? Here’s a crazy idea – or maybe not so crazy – does our desire to be puzzled affect our judgement of a certain foundational mathematical theory?

The foundational mathematical theory which I have in mind is, of course, Cantor’s transfinite set theory. Given its general acceptance nowadays, it is easy to forget that in order to generalize arithmetic from the finite to…

View original post 948 more words